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Quantization Noise

Spectral Characterization



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  The INLk of a DAC (when corrected for gain error and offset) can be 

obtained from the DNL by the expression 

 
k

k
i=1

INL = DNL i

Caution:  Be careful about using this theorem to measure the INL since errors

in DNL measurement (or simulation) can accumulate

Corollary:   The DNL of a DAC (when corrected for gain error and offset) can be 

expressed as 

DNL(k)=INLk-INLk-1

CORRECTION  from Last Lecture



Quantization Noise in ADC

XIN
ADC

n
XOUT

XREF

Consider an Ideal ADC with first transition point at 0.5XLSB

If the input is a low frequency sawtooth waveform of period T that goes 

from 0 to XREF , the error signal in the time domain will be:

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

where T1=T/2n

This time-domain waveform is termed the Quantization Noise for the ADC

with a sawtooth (or triangular) input

(same concepts apply to DACs)

REVIEW from Last Lecture



Quantization Noise in ADC
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REVIEW from Last Lecture



Quantization Noise in ADC

 LSB
 RMSE

12

X

The signal to quantization noise ratio (SNR) can now be determined.

Since the input signal is a sawtooth waveform of period T and amplitude

XREF, it follows by the same analysis that it has an RMS value of

REF
 RMS

12

X

X

Thus the SNR is given by

n RMS  RMS

 RMS  LSB

SNR = 2
E

 
X X

X
or, in dB, 

 dBSNR  =20 n log2 =6.02n

Note:  dB subscript often neglected when not concerned about confusion

REVIEW from Last Lecture



Quantization Noise in ADC

 SNR =20 n log2 =6.02n

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XIN

t

XREF

REVIEW from Last Lecture



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

For low fSIG/fCL ratios, bounded by ±XLB and at any point in time,

behaves almost as if a uniformly distributed random variable

εQ ~ U[-0.5XLSB, 0.5XLSB]

REVIEW from Last Lecture



Quantization Noise in ADC
Recall:

If the random variable f is uniformly distributed in the interval [A,B]

f : U[A,B]   then the mean and standard deviation of f are given by

 f
A+B

μ =
2

f
B-A

σ =
12

If n(t) is a random process, then for large T, 

 
1

1

t +T
2 2 2

RMS n n
t

1
V = n t dt = σ +μ

T


Theorem:

REVIEW from Last Lecture



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

LSB
RMS

X
V  = 

12

But REF
 INRMS

X 1
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32 2SNR = = 2
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Thus obtain

Finally, in db, 

n
dB

3
SNR  = 20log 2 =6.02 n + 1.76 

2

 
 
 

REVIEW from Last Lecture



ENOB based upon Quantization Noise

SNR = 6.02 n + 1.76 

Solving for n, obtain

dBSNR -1.76
ENOB = 

6.02

Note:  could have used the SNRdB for a triangle input and would have 

obtained the expression

dBSNR
ENOB = 

6.02

But the earlier expression is more widely used when specifying the ENOB 

based upon the noise level present in a data converter

REVIEW from Last Lecture



ENOB based upon Quantization Noise
For very low resolution levels, the assumption that the quantization noise is 

uncorrelated with the signal is not valid and the ENOB expression will cause

a modest error
n

corr
4 3

SNR   2 -2+
π 2

 
  

 from van de Plassche (p13)

Res (n) SNRcorr SNR 

1 3.86 7.78

2 12.06 13.8

3 19.0 19.82

4 25.44 25.84

5 31.66 31.86

6 37.79 37.88

8 49.90 49.92

10 61.95 61.96

Almost no difference for n ≥ 3

SNR = 6.02 n +1.76 

Table values in dB

REVIEW from Last Lecture



Quantization Noise
Effects of quantization noise can be very significant, even at high resolution,

when signals are not of maximum magnitude
XIN

t

XREF

XIN

t

XREF

Quantization noise remains constant but signal level is reduced

The desire to use a data converter at a small fraction of full range

is one of the major reasons high resolution is required in many applications



Quantization Noise
Effects of quantization noise can be very significant, even at high resolution,

when signals are not of maximum magnitude

XIN

t

XREF



Quantization Noise

Example:   If a 14-bit audio output is derived from a DAC designed for providing 

an output of 100W but the normal listening level is at 50mW, what is the SNR 

due to quantization noise at maximum output and at the normal listening level?

What is the ENOB of the audio system when operating at 50mW?

At 100W output, SNR=6.02n+1.76 = 90.6dB

2

L

V
=100W

R

2
1

L

V
=50mW

R
1

V
V =

44.7

20log10V1=20log10V-20log1044.7=20log10V  -33dB

At 50mW output, SNR reduced by 33dB to 57.6dB

dBSNR -1.76 57.6-1.76
ENOB =   =  = -9.3

6.02 6.02

Note the dramatic reduction in the effective resolution of the DAC when operated

at only a small fraction of full-scale.



ENOB Summary

 REF2ENOB=-log INL -1

Resolution:  

l
2

10 ACT
2 ACT

10

log N
ENOB = og N

log


INL:

 R 2ENOB = n -log -1 nR specified res, ν INL in LSB

INLREF INL rel to XREF

Quantization noise:

dBSNR -1.76
ENOB = 

6.02

dBSNR
ENOB = 

6.02

rel to triangle/sawtooth

rel to sinusoid

DNL:
HW problem

Additional ENOB will be introduced when discussing dynamic characteristics

Most widely used for static characteristics 



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Absolute Accuracy

Absolute Accuracy is the difference between the actual output and the ideal 

or desired output of a data converter

Absolute accuracy provides no tolerance to offset errors, gain errors, 

nonlinearity errors, quantization errors, frequency rolloff, or noise

In many applications, absolute accuracy is not of a major concern

but … scales, meters, etc. may be more concerned about absolute 

accuracy than any other parameter

The ideal or desired output is in reference to an absolute standard

(often maintained by the National Institute of Standards and Technology –

NIST) ( renamed from National Bureau of Standards in 1988) and could be 

volts, amps, time, weight, distance, or one of a large number of other

physical quantities) 

Absolute accuracy generally dominated by the nonidealities of the reference (a 

data converter is a ratio-metric device so no fundamental limit on ratio portion)



Relative Accuracy

In the context of data converters, pseudo-static Relative Accuracy is the 

difference between the actual output and an appropriate fit-line to overall 

output of the data converter

In many, if not most, applications, relative accuracy is of much more 

concern than absolute accuracy

INL is often used as a measure of the relative accuracy

Some architectures with good relative accuracy will have very small 

deviations in the outputs for closely-spaced inputs whereas others

may have relatively large deviations in outputs for closely-spaced inputs

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

DNL provides some measure of how outputs for closely-spaced inputs compare



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Limitations of INL & DNL in Characterizing Linearity

• INL is a key parameter that is attempting to characterize the 

overall linearity of a DAC !

• INL is a key parameter that is attempting to characterize the 

overall linearity of an ADC !

Are INL and DNL effective at characterizing 

the linearity of a data converter?

• DNL is a key parameter that is attempts to characterize the 

local linearity of a DAC !

• DNL is a key parameter that is attempts to characterize the 

local linearity of an ADC !



Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Consider the following 4 transfer characteristics, all of which have the same INL



Limitations of INL & DNL in Characterizing Linearity
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Although same INL, dramatic difference in performance particularly when

inputs are sinusoidal-type excitations

INL also gives little indication of how performance degrades at higher frequencies

Spectral Analysis often used as an alternative (and often more useful in many 

applications) linearity measure for data converters



Linearity Issues

• INL is often not adequate for predicting the 

linearity performance of a data converter

• Distortion (or lack thereof) is of major 

concern in many applications

• Distortion is generally characterized in 

terms of the harmonics that may appear in 

a waveform

Spectral Analysis often used as an alternative (and often 

more useful in many applications) linearity measure for 

data converters



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation

Spectral 

Characterization



Spectral Analysis
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If f(t) is periodic

Termed the Fourier Series Representation of f(t)



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Often the system of interest is ideally linear but practically it is weakly 

nonlinear.  

Often the input is nearly periodic and often sinusoidal and in latter case 

desired output is also sinusoidal

Weak nonlinearity will cause harmonic distortion (often just termed 

distortion)  of signal as it is propagated through the system

Spectral analysis often used to characterize effects of the weak 

nonlinearity  



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Distortion Types:  

Frequency Distortion

Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion:  Amplitude and phase of system is altered but 

output is linearly related to input

Nonlinear  Distortion:  System is not linear, frequency components 

usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input with 

the Fourier series relationships between the input and output waveforms



Spectral Analysis

Nonlinear

System

XIN(t) XOUT(t)

If    θωtsinXtX mIN 

All spectral performance metrics depend upon the sequences 

Typical spectral performance metrics of interest:    SNDR, SDR, THD, SFDR, IMOD
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1 1

sin cosOUT k k

k k

X t A a k t b k t 
 

 
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 

(index sequence, not time sequence)



Distortion Analysis



 0kkA

A1 is termed the fundamental (when input is sinusoid or periodic)

Ak is termed the kth harmonic (when input is sinusoid or periodic)

k

kA

1 2 3 4 5 6

• Often termed the DFT coefficients (will show later) 

• Spectral lines, not a continuous function



Distortion Analysis



 0kkA

k

kA

1 2 3 4 5 6

Often ideal response will have only fundamental present and all 

remaining spectral terms will vanish



Distortion Analysis



 0kkA

k

kA

1 2 3 4 5 6

For a low distortion signal, the 2nd and higher harmonics are generally 

much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low 

distortion signals



Distortion Analysis

k

kA

1 2 3 4 5 6

f(t) is band-limited to frequency 2π f kX if Ak=0 for all k>kx

Assume f(t) is periodic with period 1
T

f


where                 are the Fourier series coefficients of f(t)
0k k

A






Distortion Analysis

Total Harmonic Distortion, THD
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Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

SFDR and THD are usually determined by either the second or third harmonic

k

kA

1 2 3 4 5 6

SFDR



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even-order terms 

are absent in the Taylor’s series output for symmetric differential 

sinusoidal excitations !

Proof:

  k

01 ID k ID

k 0

V f V h V




 

Expanding in a Taylor’s series around VID=0, we obtain
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   
k

02 ID k ID

k 0

V f -V h -V




 
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 
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 
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k

When k is even, the corresponding term in [  ] vanishes



Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are absent 

in the differential output for symmetric differential sinusoidal excitations !

Proof:

VID VOD

+

-

+

-

VO1

VO2

Recall:

 

  

  
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2

0

2

2

0

sin 2
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sin 2

n
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n

n

k k

k

h n k x for nodd

x

g n k x for neven




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


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

 



 






where hk, gk, and θk are constants

That is, odd powers of sinn(x) have only  odd harmonics present 

and even powers have only even harmonics present

 sinOD k

k 0
k odd

V =




 k t  IDV = sin t From prev theorem for 



Distortion Analysis
In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output !

k

kA

1 2 3 4 5 6



Distortion Analysis
How are spectral magnitude components determined?

   
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dtetfdtetf
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1
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By integral

By DFT

By FFT (special computational method for obtaining DFT)

(with some restrictions that will be discussed)
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or

Integral is very time consuming, particularly if large number of components are required



Distortion Analysis

How are spectral components determined?

Consider sampling f(t) at uniformly spaced points in time TS seconds apart

T

TS

This gives a sequence of samples  
N

s k=1
f kT



Distortion Analysis

T

 





1k

kk0 θtk ωs inAAf( t)

Consider a function  f(t) that is periodic with period T

Band-limited Periodic Functions

Definition:    A periodic function of frequency f  is band

limited  to a frequency fmax if Ak=0 for all maxf
k

f


2
=2 f =

T


 



Distortion Analysis
T

TS
NOTATION:

T: Period of Excitation

TS: Sampling Period

NP: Number of periods over which samples are taken

N: Total number of samples

T

NT
N S

P 
Note:  NP is not an integer unless a specific relationship

exists between N, TS and T

P

N 1
h = Int -1

2 N

  
  
  

Note:  The function Int(x) is the integer part of x



Distortion Analysis
T

TS

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  If NP is an integer and x(t) is band limited to 

fMAX, then

and                                         for all k not defined above

where                      is the DFT of the sequence

f = 1/T,                             , and 

  1N

0k
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


  1N

0kSkTx




MAX
P

f N
f  = •

2 N

 
 
  P

N 1
h = Int -1

2 N

  
  
  

Key Theorem central to Spectral Analysis  that is widely used !!!  and often “abused”



Why is this a Key Theorem? 
T

TS

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  If NP is an integer and x(t) is band limited to 

fMAX, then

and                                         for all k not defined above

where                      is the DFT of the sequence

f = 1/T,                             , and 

  1N

0k
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
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


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f N
f  = •

2 N

 
 
  P

N 1
h = Int -1

2 N

  
  
  

• DFT requires dramatically less computation time than the integrals for 

obtaining  Fourier Series coefficients

• Can easily determine the sampling rate (often termed the Nyquist rate)  to 

satisfy the band limited part of the theorem   (fS>2fMAX) 



How is this theorem abused? 
T

TS

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  If NP is an integer and x(t) is band limited to 

fMAX, then

and                                         for all k not defined above

where                      is the DFT of the sequence

f = 1/T,                             , and 

  1N

0k
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
  1N

0kSkTx



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 
 
  P

N 1
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2 N

  
  
  

• Much evidence of engineers attempting to use the theorem when NP is not 

an integer

• Challenging to have NP an integer in practical applications

• Dramatic errors can result if there are not exactly an integer number of 

periods in the sampling window 



Distortion Analysis
T

TS

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have



Distortion Analysis

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have

FFT is a computationally efficient way of calculating  

the DFT, particularly when N is a power of 2



Stay Safe and Stay Healthy !



End of Lecture 4


